About
Bradford
  HIV/AIDS
Articles
  Alternative
Therapies
  HIV/AIDS
Videos
  HIV/AIDS
Links
  HIV/AIDS
News

Introduction:
Positively Positive
- Living with HIV
  Out
About
HIV
  Resume/
Curriculum Vitae:
HIV / AIDS Involvements
  Biography   HIV/AIDS
News Archive
HIV/AIDS News spacer.gif Bradford McIntyre spacer.gif
spacer.gif
   



UT Southwestern Medical Center - www.utsouthwestern.edu

HIV protein manipulates hundreds of human genes to advance progression into AIDS, UT Southwestern study shows

DALLAS – Jan. 26, 2016 - UT Southwestern Medical Center researchers have deciphered how a small protein made by the human immunodeficiency virus (HIV) that causes AIDS manipulates human genes to further its deadly agenda.

The findings, published in the online journal eLife, could aid in the search for new or improved treatments for patients with AIDS, or to the development of preventive strategies.

“We have identified the molecular mechanisms by which the Tat protein made by HIV interacts with the host cell to activate or repress several hundred human genes,” said Dr. Iván D'Orso, Assistant Professor of Microbiology at UT Southwestern and senior author of the study. “The findings clearly suggest that blocking Tat activity may be of therapeutic value to HIV patients.”

It has long been known that HIV causes AIDS by hijacking the body's immune cells, transforming them into HIV factories and killing other immune cells that normally fight disease. HIV also hides in cells and continues to undermine the host's immune system despite antiretroviral therapy that has improved the outlook of those with AIDS.

The latest data from the Centers for Disease Control and Prevention (CDC), in 2012, estimated 1.2 million Americans were living with HIV, including 156,300 whose infections had not been diagnosed. About 50,000 people in the U.S. are newly infected with HIV annually, the CDC projects. In 2013, the CDC estimated that over 26,000 Americans had the advanced form of HIV infection, AIDS.

Like all retroviruses, HIV has very few genes of its own and must take over the host's cellular machinery in order to propagate and spread throughout the body. Although the broad aspects of that cellular hijacking were known, the nuances remain to be explored, Dr. D'Orso said.

“We observed that HIV methodically and precisely manipulates the host's genes and cellular machinery. We also observed that HIV rewires cellular defensive pathways to benefit survival of the virus,” he added.

The study provides insights into HIV's ability to survive despite antiretroviral therapy, findings that could lead to new therapeutic targets or ways to make current therapies more effective, he said.

“Our study indicates that this small viral protein, Tat, directly binds to about 400 human genes to generate an environment in which HIV can thrive. Then, this protein precisely turns off the body's immune defense. It is striking that such a small viral protein has such a large impact,” Dr. D'Orso said. “The human genes and pathways that Tat manipulates correlate well with symptoms observed in these patients, such as immune system hyperactivation, then weakening, and accelerated aging,” Dr. D'Orso said, describing the situation in which HIV infection leads to AIDS.

Italy's National Institute of Health in Rome recently completed a phase II clinical trial of an experimental vaccine that targets the Tat protein. That trial, which followed 87 HIV-positive patients for up to three years, reported that the vaccine was well-tolerated without significant side effects. However, it will take several years to determine if the vaccine works, Dr. D'Orso said.

Although someone can have HIV for years without showing symptoms, AIDS occurs when HIV blocks the body's ability to fight off illness. The person then becomes overrun by the opportunistic infections and specific cancers that are hallmarks of AIDS.

Study contributors included joint first authors Jonathan Reeder, a medical student at UT Southwestern who worked in Dr. D'Orso's lab as a Green Fellow while an undergraduate at UT Dallas; and Dr. Youn-Tae Kwak, a research scientist in Biochemistry. Co-authors include Ryan McNamara, a former graduate student in Microbiology; and Dr. Christian Forst, a former UT Southwestern faculty member who is now at the Icahn School of Medicine at Mount Sinai, New York.

Grants from the National Institutes of Health and The Welch Foundation supported this research.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's distinguished faculty has included six who have been awarded Nobel Prizes since 1985. The faculty of more than 2,700 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to about 92,000 hospitalized patients and oversee approximately 2.1 million outpatient visits a year.


SOURCE: UT Southwestern Medical Center

Media Contact:
Deborah Wormser
214-648-3404
deborah.wormser@utsouthwestern.edu

For more HIV and AIDS News visit...

Positively Positive - Living with HIV/AIDS:
HIV/AIDS News


...positive attitudes are not simply 'moods'

Site Map

Contact Bradford McIntyre.

Web Design by Trevor Uksik
uks.jpg

Copyright © 2003 - 2025 Bradford McIntyre. All rights reserved.

DESIGNED TO CREATE HIV & AIDS AWARENESS

spacer.gif